chariot.bulk_inference package
Submodules
chariot.bulk_inference.job module
- chariot.bulk_inference.job.create_bulk_inference_job(job_spec: NewBulkInferenceJobRequest) str | None [source]
Create a bulk inference job.
- Parameters:
job_spec (models.NewBulkInferenceJobRequest) – The bulk inference job specification.
- Returns:
The bulk inference job id.
- Return type:
Optional[str]
- chariot.bulk_inference.job.get_bulk_inference_job(job_id: str) BulkInferenceJob | None [source]
Get a bulk inference job.
- Parameters:
job_id (str) – The bulk inference job id.
- Returns:
The bulk inference job.
- Return type:
Optional[BulkInferenceJob]
- chariot.bulk_inference.job.get_bulk_inference_jobs(model_id: str, dataset_version_id: str | None = None, dataset_snapshot_id: str | None = None, dataset_version_split: str | None = None, inference_method: str | None = None, limit: int | None = None, offset: int | None = None) list[BulkInferenceJob] [source]
Get bulk inference jobs.
- Parameters:
model_id (str) – The model id.
dataset_version_id (Optional[str]) – Optional dataset version ID. Defaults to None.
dataset_snapshot_id (Optional[str]) – Optional dataset snapshot ID. Defaults to None.
dataset_version_split (Optional[str]) – Optional dataset snapshot split. Defaults to None.
inference_method (Optional[str]) – Optional model inference method. Defaults to None.
limit (Optional[int]) – Optional pagination limit. Defaults to None.
offset (Optional[int]) – Optional pagination offset. Defaults to None.
- Returns:
.
- Return type:
List[BulkInferenceJob]
chariot.bulk_inference.models module
- class chariot.bulk_inference.models.BulkInferenceJob(*, execution_id: str, execution_status: str, num_computed: int | None = None, expected_total: int | None = None)[source]
Bases:
BaseModel
Information about a previously created bulk inference job.
- Parameters:
execution_id (str) – The ID of this bulk inference job.
execution_status (str) – The status of this job.
num_computed (int | None) – The number of inferences completed so far in this job.
expected_total (int | None) – The total number of datums to infer on in this job.
- execution_id: str
- execution_status: str
- expected_total: int | None
- property job_id
The ID of this bulk inference job.
- property job_status: ProgressState
The status of this bulk inference job.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- num_computed: int | None
- class chariot.bulk_inference.models.NewBulkInferenceJobRequest(*, model_project_id: str, model_id: str, dataset_project_id: str, dataset_id: str, dataset_snapshot_id: str, dataset_snapshot_split: str, inference_method: str = '', evaluate_metrics: bool = False, batch_size: int = 1)[source]
Bases:
BaseModel
A request to create a new bulk inference job.
- Parameters:
model_project_id (str) – The project ID of the project containing the model.
model_id (str) – The model ID of the model to use for inference.
dataset_project_id (str) – The project ID of the project containing the snapshot to infer on.
dataset_id (str) – The dataset ID dataset containing the snapshot to infer on.
dataset_snapshot_id (str) – The ID of the snapshot to infer on.
dataset_snapshot_split (str) – The split of the snapshot to infer on.
inference_method (str) – The inference method (AKA action) to use for inference. Only needed for task types that support multiple inference methods. Defaults to “”, meaning the default action will be chosen for task types supporting only a single action.
evaluate_metrics (bool) – Whether to use Valor to perform an evalaution after inference is complete. When
evaluate_metrics
is true, only snapshot datums with annotations will be infered on. To infer over unannotated data, set this to false. Defaults to false.batch_size (int) – The batch size to use for inference. Datums will be sent to inference servers in groups of this size.
- batch_size: int
- dataset_id: str
- dataset_project_id: str
- dataset_snapshot_id: str
- dataset_snapshot_split: str
- evaluate_metrics: bool
- inference_method: str
- model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_id: str
- model_project_id: str
- class chariot.bulk_inference.models.ProgressState(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]
Bases:
StrEnum
The status of a bulk inference job.
- ABORTED = 'aborted'
- FAILED = 'failed'
- INITIALIZED = 'initialized'
- IN_PROGRESS = 'in_progress'
- RUNNING = 'running'
- RUNNING_FAILED = 'running_failed'
- SUCCEEDED = 'succeeded'